Monascuspiloin Enhances the Radiation Sensitivity of Human Prostate Cancer Cells by Stimulating Endoplasmic Reticulum Stress and Inducing Autophagy
نویسندگان
چکیده
Prostate cancer is a very common cancer among males. Traditional treatments for prostate cancer have limited efficacy; therefore, new therapeutic strategies and/or new adjuvant drugs must be explored. Red yeast rice (RYR) is a traditional food spice made in Asia by fermenting white rice with Monascus purpureus Went yeast. Accumulating evidence indicates that RYR has antitumor activity. In this study, PC-3 cells (human prostate cancer cells) were used to investigate the anti-cancer effects of ionizing radiation (IR) combined with monascuspiloin (MP, a yellow pigment isolated from Monascus pilosus M93-fermented rice) and to determine the underlying mechanisms of these effects in vitro and in vivo. We found that IR combined with MP showed increased therapeutic efficacy when compared with either treatment alone in PC-3 cells. In addition, the combined treatment enhanced DNA damage and endoplasmic reticulum (ER) stress. The combined treatment induced primarily autophagy in PC-3 cells, and the cell death that was induced by the combined treatment was chiefly the result of inhibition of the Akt/mTOR signaling pathways. In an in vivo study, the combination treatment showed greater anti-tumor growth effects. These novel findings suggest that the combined treatment could be a potential therapeutic strategy for prostate cancer.
منابع مشابه
Sesterin as a biomolecule
Sestrins (Sesns), highly conserved stress-inducing metabolic proteins, are known to protect organisms against various harmful stimuli including DNA damage, oxidative stress, endoplasmic reticulum (ER) stress, and hypoxia. Sestrins regulate metabolism mainly through activation of AMP-dependent protein kinase (AMPK) and inhibition of rapamycin complex 1 (mTORC1). Sestrins also play a pivotal role...
متن کاملTriptolide induces protective autophagy through activation of the CaMKKβ-AMPK signaling pathway in prostate cancer cells
Triptolide, an active compound extracted from the Chinese herb thunder god vine (Tripterygium wilfordii Hook F.), has potent anti-tumor activity. Recently, triptolide was found to induce autophagy in cancer cells. However, the effects of triptolide on autophagy in human prostate cancer (PCa) cells have not yet been clearly elucidated. In this study, we demonstrated that triptolide induces autop...
متن کاملCorrigendum: Nonautophagic cytoplasmic vacuolation death induction in human PC-3M prostate cancer by curcumin through reactive oxygen species -mediated endoplasmic reticulum stress
The antiapoptotic and antiautophagic abilities of cancer cells constitute a major challenge for anticancer drug treatment. Strategies for triggering nonapoptotic or nonautophagic cell death may improve therapeutic efficacy against cancer. Curcumin has been reported to exhibit cancer chemopreventive properties. Herein, we report that curcumin induced apoptosis in LNCaP, DU145, and PC-3 cells but...
متن کاملLate-stage inhibition of autophagy enhances calreticulin surface exposure
Calreticulin (CRT) exposure on the cell surface is essential for inducing immunogenic cell death by chemotherapy. Recent studies have shown conflicting effects of chemotherapy-induced autophagy on CRT exposure in cancer cells. Our data revealed that surface-exposed CRT (Ecto-CRT) emission was attenuated by inhibition of autophagy at early stages; however, inhibition of autophagy at late stages ...
متن کاملCotargeting stress-activated Hsp27 and autophagy as a combinatorial strategy to amplify endoplasmic reticular stress in prostate cancer.
Hsp27 is a stress-activated multifunctional chaperone that inhibits treatment-induced apoptosis and causes treatment resistance in prostate and other cancers. We previously showed that targeted suppression of Hsp27 sensitizes cancer cells to hormone and chemotherapy. However, mechanisms by which Hsp27 confers cell treatment resistance are incompletely defined. Here, we report that Hsp27 protect...
متن کامل